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Two Cylindrical Obstacles in a Rectangular
Waveguide— Resonances and
Filter Applications

ROLAND GESCHE, MEMBER, IEEE, AND NORBERT LOCHEL

Abstract —Two metallic or lossy dielectric cylinders placed in one cross
section of a rectangular waveguide are investigated by means of the
orthogonal expansion method. Resonances are shown by frequency re-
sponses of the transmission coefficient. They are discussed by patterns of
the magnetic field and diagrams of the Poynting vector. Physical explana-
tions of the resonances are given.

The structure may be used as a filter element. With two small dielectric
posts, a frequency characteristic with two stopbands can be obtained.
Center frequencies are tunable by moving the posts. Using one large
metallic and one small dielectric post, a tunable passband characteristic
can be realized.

I. INTRODUCTION

YLINDRICAL dielectric or metallic posts in a rect-
C angular waveguide can be used to realize several filter
characteristics. A single lossy dielectric cylinder in a rect-
angular waveguide has been discussed in [1]. In the present
work, the method used in [1] has been extended to two
posts positioned in one cross section of a rectangular
waveguide [2]. The structure is shown in Fig. 1 and the
following restrictions are considered:

* Incident fields are of the TE, , mode.

® The axes of the cylindrical obstacles are parallel to
the electric field vector.

¢ The post materials are assumed to be isotropic, ho-
mogeneous, and linear; they may have losses.

s The obstacles extend over the entire waveguide
height.

* The waveguide walls are ideal conductors.

An overview of previous papers which investigate the
one-post structure is given in [1]. Filter applications have
been discussed by Lauterjung [3] and Sahalos and Vafiadis
[4]. Methods to calculate multiple-post structures are given
in [5]-[7]. A lumped-element representation of a lossy post
has been discussed in [8].
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Fig. 1. Rectangular waveguide with two cylindrical posts.

II. MATHEMATICAL FORMULATION

The mathematical formulation is based on the calcula-
tion of a single dielectric post given in [1]. In the following,
only the fundamental equations and the modifications of
[1] are given.

The geometry of the structure and the coordinate sys-
tems are shown in Fig. 2. Each post is located at the origin
of a cylindrical coordinate system (p}, @3, z and p3, ¢3, z,
respectively). Furthermore, two cylindrical interaction re-
gions (IR1 and IR2) are introduced with the coordinate
systems p,, ¢, z and p,, @,, z, respectively. Each interac-
tion region includes one obstacle; together they cover the
entire cross section of the rectangular waveguide. This
cross section divides the rectangular waveguide into two
regions, named W1 and W2.

The fields of the incident TE ,, mode and all scattered
fields are independent of the z coordinate. Therefore, it is
sufficient to consider only three field components: one
electrical field component parallel to the post axes and two
perpendicular magnetic field components. These fields can
be derived from a vector potential:

E=—(v xH).

A= A6 H=v x A
Jwe
(1)
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Fig. 2." Geometry of the investigated structure.

Perfectly conducting metallic and lossy dielectric materials
are considered by the permittivity:

{ (11— jtandy)
€= or inside post 1
o

€t o(1— jtandy)
€= or

— J'w

inside post 2

€ outside the posts.

(2)

A. Fields in the Interaction Regions

In both interaction regions, a field formulation in the
regions outside the posts (p, > r, + |b, — a,|) is chosen using
the radial functions Uy(kp,), U3, (kp,), U5 (kp,) defined in
1

1
A= Uo(ke)) 5=

© sin p, COS P,
+ U (kp, ) ——— + U° (kp, ,
p{:l{ zp( pz) ‘/; zp( pz) ‘/; }

i=1,2. (3)

The subscript i marks the interaction regions IR1 and IR2,
respectively.
The separation condition yields

(4)

k = wyfegpg .

963

A, is proportional to the electric field component E,. A
further function, which is proportional to the magnetic
field components H,, , is defined as

dA,
H,h=— 79?”
1
- 'O(kp’)_\/i—_;
ol sin pe, ‘ cos P,
+ El{ffp(kpi)—‘/—;— + pr(kp,)T},
i=1,2 (5)

where & is the waveguide width 2(a, + a,), which is used
as the normalization length.

Each scattering obstacle is introduced by a matrix equa-
tion for the amplitude vectors of the field formulations (3)
and (5) as described in [1]:

U (kp,) = Z,(ko,)-I,(kp,) i=1,2.

(6)

B. Scattering Parameters

In the rectangular waveguide regions W1 and W2, fields
of the TE,,, modes are considered:
Waveguide region Wi:

x mm
A,= ). sin Y
) m=1 h

(7)

{ qmeﬁjk.tmx -+ rme+.1kxmx} .

Waveguide region W2:

i m
A,= Y sin aila {107 hm™ 4 5, ko }

: (®)

m=1

Kk =\/:;.>Z€ ~[ﬂr 9)
xm 0""0 h .

An expansion of the fields (7) and (8) in terms of the
¢-dependent orthogonal eigenfunctions of the fields (3)
and (5) on the surfaces of the interaction regions yields
relations between the amplitude vectors (the explicit for-
mulas for the coupling matrices K%, KV K'E and K4
are given in [1]):

g1 ] KN
q> r
U(kR,) = KVE- s.l +‘£iUA. t'l i=1,2 (10)
) Iy
| | C
KN 7y ]
9 )
TkR) =K\ [ ek | s ()
S5 Iy
R L

Equations (10) and (11) are combined, forming a new
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interaction region from IR1 and IR2 which extends over
the entire cross section of the rectangular waveguide and
which is described by the amplitude vectors of IR1 and
IR2:

q; n
q, r
U,(kR,) | K% 15| |K] |h
5, I
L ]
r‘h_ F’l_
q n
I,(kR KIE| | - K|
_}( 1) — 21 . . + —1’A . . (13)
L(kRy) | K5 || (K] (&
Y] Iy
] -

The scattering matrix can be derived from (12) and (13)
using (6):

— b - 1

r d1
p) 9>
f=E (14)
2 Sy
- L - ]
_ -1
o [ [zkr) 0 ] TK
Rz 0 Z,(kR,) | | kM
_ [_Z_l(kkl) o [kF] [k s)
0 Z(kRy) | |KIF| |KFE))

C. Numerical Investigation

The mathematical formulation described above is exact.
For numerical investigation. all infinite sums must be
approximated by finite sums. Convergence of scattering
parameters and fields yield criteria for the accuracy of the
results. Conditions for the relations of the wavenumbers in
the different regions are given by the mathematical method
used. The sum of waves in both interaction regions (2 p..y
+2 Pmax2 +2) must be equal to the sum of waves in the
rectangular waveguide regions (m . 1 + 7 ,.,,). It is suit-
able to consider the same wavenumbers in both rectangu-
lar waveguide regions (m, . ;= m m ... ). This yields
the condition

max2

(16)

If the sizes of the interaction regions are nearly equal
(R, = R,), the wavenumbers should also be equal ( p,,.,;

M max = Pmaxi + Prmax 2 +1.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 6, JUNE 1989

pmaxi = 12
pmax2 = 12
ltll = 0.57072
pmaxl = 13
pmaxE = 13
ftii = 0.54632
pmaxl = 14’
pmaxZ = 14
|t] = 053511
Fig. 3. Convergence of magnetic fields:
f,=14 wt =057
€, =385 €,,=38.5
tand, =2x10~* tand, =2x 1074
rp=01h rn=0.1h
b, =0.94 by, =03h.

= po.a)- Patterns of the magnetic fields for different
wavenumbers are shown in Fig. 3. The convergence is
obvious; for p, .. = Pmaxs =14 the errors of the field
matching become negligible. In this case, the accuracy of
the scattering parameters of the fundamental mode is
better than 1 percent. A further increase in wavenumbers
yields no improvement in the results because of increasing
numerical errors (a double-precision arithmetic was used).
For higher wavenumbers, a more precise numerical treat-
ment is necessary. So the example given represents the
numerical limit of the mathematical method related to the
computer system (Fortran 77, IBM 4381). The following
results are given for smaller post sizes, so an accuracy
better than 1 percent can be obtained with following
wavenumbers:

(17)

Pmaxlzpma.x2=14 ’nmax=29'

III. REesuLrts

Results are given for some examples of filter elements.
With two dielectric posts, two bandstop resonances occur.
Furthermore, a tunable passband characteristic can be
obtained with one large metallic and one small dielectric
post.
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Fig. 5. Frequency responses showing the tuning of the upper stopband

by moving the lower dielectric post:
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Fig. 6. Frequency responses showing the tuning of the lower stopband
by moving the upper dielectric post:
€, =385 €, =385
tand, =2x107* tan8, = 2x107*
r, = 0.03h r,=0.03A.
fn = 1469
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Fig. 7. Magnetic field in a bandstop filter with two dielectric posts at
the two lowest resonance frequencies (wt = 0.57):

4 =385 €,,=385
tand, =2x107* tand, = 2X10"4
L = 0.03h ry, =0.03h
b, = 0.8k by = 0.075h.
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In all frequency responses, the normalized frequency f,
1s used:

/

f ¢TE;q

(18)

where f.rp is the cutoff frequency of the fundamental
TE,, mode. Together with the wavegnide width 4, used as
a normalization length, the results can be applied to all
waveguide bands used in practice.

= — :——k:
fn 20) €oltp -

A. Bandstop Filter

For all results given in this chapter, the sizes of the
interaction regions are equal (R; = R, = 0.25k). A ceramic
post material is chosen with high permittivity (e,, = 38.5)
and low loss (tand; =2x107*). Although the post sizes
are small (r; = r, = 0.034), the lowest resonances occur in
the fundamental frequency range of the rectangular wave-
guide (1< f, < 2).

- The frequency responses for several post locations are
shown in Figs. 4-6. They show ¢,, the transmission coeffi-
cient of the fundamental TE,, mode defined by (8). If the
geometry is symmetric, only one resonance occurs in the
frequency range shown (Fig. 4, b,=0.2k). Moving the
lower post to the sidewall of the waveguide (Fig. 4,02h >

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 6, JUNE 1989

0.0

-10.0

ltlldB —20.0+

—30.0

—40.0
1.0

1.5

—-0.5 T T T T
1.0 1.2 1.4 1.6 1.8 2.0

Sa

Fig. 9. Frequenéy responses of a tunable bandpass filter with one
dielectric and one metallic post:
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tand, = 2x10~*

r=0.03h r,=03h
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b, > 0.15h), a second resonance occurs at a frequency
different from the first resonance frequency. Further
movement of the lower post (Fig. 5, 0.14 > b, > 0.05h)
increases the upper resonance frequency while the lower
resonance frequency remains nearly constant. If the upper
post is moved (Fig. 6), the lower resonance frequency can
be tuned independently of the upper resonance frequency.
This structure can be used as a tunable filter element with
two stopbands. Each stopband can be tuned nearly inde-
pendently of the other by moving one post.

A physical explanation of this effect is given by patterns
of the magnetic fields (Fig. 7) and the Poynting vectors
(Fig. 8). The stationary resonance fields are concentrated
around the upper post at the lower resonance and around
the lower post at the upper resonance (Fig. 7). The influ-
ence of moving the post on the frequency is related to the
field energy concentration near the obstacle.

Now the field distributions in the cross sections of the
waveguide will be discussed. At the lower resonance fre-
quency, the fields beneath the posts are similar to the
fields of the TE,; mode of the rectangular waveguide. At
the upper resonance frequency, they are similar to the
TE,, mode. The resonances can therefore be explained by
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Fig. 10. Frequency responses of a tunable bandpass filter with one
dielectric and one metallic post:
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the occurrence of higher order waveguide modes in a
dielectric-loaded waveguide region. The lowest resonance
is attached to the TE,; mode, the next to the TE,, mode.
If the structure becomes symmetric, the TE,, mode is not
excited, but the resonance frequency remains constant, so
the occurrence of the resonance shown in Fig. 4 can be
explained.

Fig. 8 shows the Poynting vectors below, between, and
above the resonance frequencies. Below the lower reso-
nance frequency the power flow from waveguide region
W1 to region W2 is directed by a vortex located beneath
the post with the greater distance to the sidewall. At
frequencies between the two resonances, the power flow is
directed by the post located close to the sidewall. Above
the second resonant frequency, the influence of the two
posts decreases and the power is transported nearly sym-
metrically between the posts. At the resonant frequencies,
the vortex corresponding to the post causing the resonance
changes its sense of rotation. This classification is in
accordance with the comments on Fig. 7. Each occurring
resonance adds one vortex. This can be explained by the
waveguide modes in the way that each resonance is linked
with an occurring waveguide mode and a new power
distribution of the resonance fields.

967
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Fig. 11. Magnetic field in a bandpass filter with one dielectric and one
metallic post at the lowest resonance frequency:
5, =1.565 |tlgp=—014
€,1=1385 €= — joo
tand; =2x107*

r,=0.03h r,=0.3h

by =0.9h by =0.3h

R, =02h R, =03h.

B. Bandpass Filter

Frequency responses of the transmission coefficient of a
bandpass filter with one large metallic and one small
dielectric post are shown in Figs. 9 and 10. One passband
is visible; the resonance frequency depends on the post
position.

Patterns of the magnetic fields at different times are
shown in Fig. 11; the corresponding Poynting vector dia-
gram is given by Fig. 12. The waveguide region containing
the large metallic post can be considered as a waveguide
below its cutoff frequency. Only in the vicinity of the
resonance of the small dielectric post is power transported
from waveguide region W1 to region W2.

IV. CONCLUSIONS

A method is presented which provides accurate scatter-
ing parameters and field patterns for two cylindrical obsta-
cles positioned in one cross section of a rectangular wave-
guide.

The two lowest resonances of a bandstop filter element
with two dielectric posts are discussed. Resonance frequen-
cies can be tuned by moving the posts. Each resonance can
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Fig. 12. Poynting vector in a bandpass filter with one dielectric and one
metallic post at the lowest resonance frequency:
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be referred to one post and one waveguide mode to inter-
pret the physical mechanism and the behavior of the
resonance.

A bandpass filter can be realized by one metallic and
one dielectric post.
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